Demystifying DMEK
Making The Transition

Course Number 251: New and Emerging Technologies in Cataract and Refractive Surgery
Annual Meeting of the American Academy of Ophthalmology
November 15, 2015

Anthony J. Aldave, M.D.
Professor of Ophthalmology
Chief, Cornea and Uveitis Division
The Jules Stein Eye Institute
The University of California, Los Angeles

Disclosure Anthony J. Aldave, M.D.
• Consultant (ad hoc)
 • Allergan
 • Avellino Laboratories
• Research Funding
 • National Eye Institute
• Speaker’s Bureau
 • Alcon
 • Allergan
 • Avellino Laboratories
• Travel Support
 • Thea Laboratories

Demystifying DMEK
Why make the Transition?
• Does not require lamellar corneal dissection
 • Microkeratome not required for automated lamellar dissection
• Better visual acuity
• Lower incidence of endothelial rejection
Figure 2. Flow diagram of patient selection. A total of 673 consecutive cases were included in the study. Starting with 500 cases of DMEK, 34 cases were excluded due to incomplete data (6 cases) or a poor visual outcome (28 cases). This left a final cohort of 466 patients. Figure 2 shows the patient selection process. 1. DMEK: Descemet's membrane endothelial keratoplasty. 2. DSAEK: Descemet stripping automated endothelial keratoplasty. 3. Post-op: postoperative.

Table 3. Visual Outcome after Descemet’s Membrane Endothelial Keratoplasty

<table>
<thead>
<tr>
<th>BCVA</th>
<th>Preoperative</th>
<th>6-Months</th>
<th>Preoperative</th>
<th>6-Months</th>
<th>Preoperative</th>
<th>6-Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥20/40 (≥0.5)</td>
<td>40% (n=151)</td>
<td>96% (n=136)</td>
<td>90% (n=225)</td>
<td>92% (n=136)</td>
<td>68% (n=136)</td>
<td>96% (n=121)</td>
</tr>
<tr>
<td>>20/20 (≥0.3)</td>
<td>8% (n=9)</td>
<td>7% (n=10)</td>
<td>7% (n=11)</td>
<td>7% (n=10)</td>
<td>9% (n=10)</td>
<td>7% (n=8)</td>
</tr>
<tr>
<td>≥20/20 (≥0.3)</td>
<td>2% (n=2)</td>
<td>1% (n=1)</td>
<td>1% (n=1)</td>
<td>1% (n=1)</td>
<td>2% (n=2)</td>
<td>1% (n=1)</td>
</tr>
</tbody>
</table>

Table 4. Complications after Descemet’s Membrane Endothelial Keratoplasty (DMEK) Within the First 6 Months Postoperatively (N = 500)

<table>
<thead>
<tr>
<th>Overall Group (Cases: 6-Months)</th>
<th>Group I (Cases: 6-Months)</th>
<th>Group II (Cases: 6-Months)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor graft failure*</td>
<td>5.2% (20)</td>
<td>6.0% (12)</td>
<td>3.6% (9)</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>3.0% (10)</td>
<td>3.2% (10)</td>
<td>2.8% (8)</td>
</tr>
<tr>
<td>Secondary DSEK</td>
<td>0.4% (1)</td>
<td>0.0% (0)</td>
<td>0.4% (1)</td>
</tr>
<tr>
<td>Primary PKF</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Intracocular complications</td>
<td>1.4% (5)</td>
<td>1.4% (5)</td>
<td>1.4% (5)</td>
</tr>
<tr>
<td>DMEK graft failure</td>
<td>1.5% (5)</td>
<td>1.5% (5)</td>
<td>1.5% (5)</td>
</tr>
<tr>
<td>Localized retinal detachment</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Secondary DSEK</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Primary PKF</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Donor graft failure*</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
</tbody>
</table>

Table 5. Complications after Descemet’s Membrane Endothelial Keratoplasty (DMEK) Within the First 6 Months Postoperatively (N = 500)

<table>
<thead>
<tr>
<th>Overall Group (Cases: 6-Months)</th>
<th>Group I (Cases: 6-Months)</th>
<th>Group II (Cases: 6-Months)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor graft failure*</td>
<td>5.2% (20)</td>
<td>6.0% (12)</td>
<td>3.6% (9)</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>3.0% (10)</td>
<td>3.2% (10)</td>
<td>2.8% (8)</td>
</tr>
<tr>
<td>Secondary DSEK</td>
<td>0.4% (1)</td>
<td>0.0% (0)</td>
<td>0.4% (1)</td>
</tr>
<tr>
<td>Primary PKF</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Intracocular complications</td>
<td>1.4% (5)</td>
<td>1.4% (5)</td>
<td>1.4% (5)</td>
</tr>
<tr>
<td>DMEK graft failure</td>
<td>1.5% (5)</td>
<td>1.5% (5)</td>
<td>1.5% (5)</td>
</tr>
<tr>
<td>Localized retinal detachment</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Secondary DSEK</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Primary PKF</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>Donor graft failure*</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
</tbody>
</table>

Demystifying DMEK
Tip # 1

Be Prepared
Have a Back Up Plan

DSEK Post-Operative Complications

Table 2. Main and Ancillary Outcomes in Eyes Treated With Prednisolone Acetate 1% Suspension or Loteprednol Etabonate 0.5% Gel

<table>
<thead>
<tr>
<th></th>
<th>Prednisolone Acetate 1%</th>
<th>Loteprednol Etabonate 0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes (%)</td>
<td>0.05 (0)</td>
<td>0.05 (0)</td>
</tr>
<tr>
<td>IOP elevation</td>
<td>0.03 (0)</td>
<td>0.03 (0)</td>
</tr>
<tr>
<td>N = 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOP ≥24 mm Hg</td>
<td>0.03 (0)</td>
<td>0.03 (0)</td>
</tr>
<tr>
<td>N = 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOP ≥18 mm Hg</td>
<td>0.03 (0)</td>
<td>0.03 (0)</td>
</tr>
<tr>
<td>N = 116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOP ≥10 mm Hg</td>
<td>0.03 (0)</td>
<td>0.03 (0)</td>
</tr>
<tr>
<td>N = 116</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Kruskal-Wallis test.
†If fiber must test.
‡Statistical intervention on POD 1 or later.

Demystifying DMEK
Tip # 1

Be Prepared
Demystifying DMEK

Patient Selection

- Look for
 - Isolated endothelial failure
 - Pseudophakic corneal edema
 - Fuchs corneal dystrophy
 - Iridocorneal endothelial syndrome
 - Minimal stromal edema
 - Multifocal IOL
 - Unhappy DSEK patients

- Avoid
 - Previous vitrectomy
 - Prior glaucoma surgery
 - Prior keratoplasty
 - ACIOL
 - Need for IOL exchange

Donor Cornea Selection
Older is Better
Demystifying DMEK
Tip # 3

Donor Cornea Selection

• Donor
 • Age between 65 and 75 years
 • Negative serologic evaluation
 • No history of prior corneal surgery

• Donor cornea
 • ECC > 2500/mm²
 • DTP < 12 hours
 • DTS < 7 days
 • S stamp

Preoperative
Inferior PI

Demystifying DMEK
Tip # 4

Preoperative Inferior PI

Plan an Escape
Demystifying DMEK

Tip # 5

Donor Preparation

Half is a Whole Lot Better Than Nothing

Tip # 6

Donor Insertion

Bubble = Trouble
Demystifying DMEK

Tip # 6

Donor Insertion

Bubble = Trouble

Demystifying DMEK

Tip # 7

Determining Donor Orientation

Seeing is Believing
Demystifying DMEK

Tip # 7

Determining Donor Orientation

- S stamp
- Vision blue
- Slit beam
 - Hand held
 - Microscope mounted

www.slitlamp.com

Demystifying DMEK Tip # 7
Determining Donor Orientation

Donor Unfolding

Patience is a Virtue

Demystifying DMEK Tip # 8
Donor Unfolding
Donor Centration
Patience is Still a Virtue

Donor Centration Interface Technique

Postoperative Management
If It Ain’t Broke, Don’t Fix It
Making the Transition

- Although associated with a steep learning curve, DMEK offers advantages over DSEK that make it a technique worth learning
 - Does not require lamellar corneal dissection
 - Better visual acuity
 - Lower incidence of endothelial rejection
- As many eyes with endothelial decompensation are not candidates for DMEK, the corneal transplant surgeon should be able to perform both DSEK and DMEK
Thank You For Your Attention!

• aldave@jsei.ucla.edu